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Calculation of Distributed Capacitances
of Spiral Resonators

Zunfu Jiang, P. S. Excell, and Z. M. Hejazi

Abstract—A method for calculating the distributed capacitances and
resonant frequencies of spiral resonators is described. First, the charge
distribution on a spiral is found by a simplified model and the moment
method, then the distributed capacitance is calculated. The equivalent
inductance of the spiral resonator is then evaluated according to a
standard formula, and the resonant frequencies are finally computed.
The calculated results are compared with experimental data, and a good
agreement between them is shown.

I. INTRODUCTION

Planar spirals have certain advantages as electrically small res-
onators, but their characteristics are not well understood and empirical
design methods tend to be used. Experimental results for some
characteristics of planar spiral resonators are described in [1]. The
equivalent circuit of a planar spiral resonator can be made up of an
inductance, a capacitance, and a resistance. The inductances of thin-
film planar spirals are considered in [2]–[4]. An empirical formula,
with limited accuracy, for calculating the distributed capacitance of
planar spirals is given in [5] as

C = 0:035Do + 0:06 [pF] (1)

whereDo is the outer diameter of the spiral in millimeters. This
formula is only approximate as it clearly neglects several relevant
parameters.

The inductance and resistance of a planar spiral resonator can
be computed with sufficient accuracy from the available literature.
While the resonant frequencies of spiral inductors can also be
predicted using standard software packages, there is a high cost in
computational time and it is useful to have analytical expressions
if they can be found. For this, a simple effective method for the
capacitance is the main need.

In this paper, a method for calculating distributed capacitances
and resonant frequencies of spiral resonators is described. First, the
charge distributions on the spirals are found by a simplified model
and the moment method. Then, the distributed capacitances of the
spiral resonators are calculated. The equivalent inductances of the
spiral resonators are then evaluated according to a standard formula
and the resonant frequencies are finally computed and compared with
experimental data from Nishiet al. [1].

II. CALCULATION OF THE DISTRIBUTED CAPACITANCE

A planar spiral resonator system includes a spiral on a substrate,
coupling circuits, and a shield box. For simplicity, a spiral in a
uniform dielectric medium with permittivity" is considered and is
illustrated, with an equivalent circuit, in Fig. 1.

It is assumed that the capacitanceCo per unit length of the spiral
resonator is given (see Section III). Following the method described
in [8], the total distributed capacitanceC of the spiral resonator can be
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(a) (b)

Fig. 1. Layout of a spiral resonator and its equivalent circuit. (a) The
physical layout. (b) Equivalent circuit.

found. If the widthW of the spiral conductors is equal to the spacing
S between the turns, the equation of the spiral isr = R0

i +W�=�.
R0

i is the initial mean radius, which is equal toRi + W=2; Ri is
the inner initial radius,r is the mean radius, and� is the rotational
angle in radians (see Fig. 1).

The voltage between the ends of the spiral withN turns is
denoted byU . Then, the voltage per turn isU=N , and the distributed
capacitance of the spiral is

C =
q
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�
d� (2)

hence

C = � Co(Ri +Ro) (3)

whereRo is the outer final radius of the spiral. This formula is
obtained under the assumption thatCo is independent ofr.

III. CALCULATION OF THE CAPACITANCE Co

A. Green’s Function

The geometric formation of a spiral is approximately axisymmetric
[3]. The potential function in the space occupied by it is also
symmetric in a cylindrical coordinate system. Therefore, each turn
of the spiral can be substituted by a circular loop with an appropriate
radius. The capacitanceCo can be computed from two circular loops
with the same widthW and spacingS. The Green’s function of a
circular wire loop with radiusro and a line charge density� in a
homogeneous dielectric with permittivity" can be given by [7]
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F (k) is the complete elliptic integral of the first kind with modulus
k, and (r; z) is the coordinate of any pointP .

For two thin annular rings [see Fig. 2(b)], the total potential at an
arbitrary pointP (r; z) is
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Fig. 2. (a) Charge distributions on two rings. (b) The geometry of two
annular rings.

whereG1; G2; and �1; �2 are the Green’s functions and charge
distribution functions, respectively. The inner and outer rings have
similar mathematical formulations.

B. Charge Distribution

When the pointP (r; z) is taken on the surface of the inner or outer
ring, the voltage on the surface of the ring can be obtained from (6).
Since the two rings are taken to be perfect conductors, the tangential
electric fields on their surfaces must be zero, i.e., the potential of
every point on the surface of each ring must be equivalent. This
condition can be obtained by adjusting the charge distribution on
each ring. If the voltages on the surfaces of both rings are given as
+V and�V , respectively, then the charge distributions on both ring
surfaces can be solved from (6).

The integrals can easily be solved by a straightforward numerical
technique or the moment method. First, each conductor ring surface
is subdivided intoN1 sub-annuli of finite widthHi, and every
sub-annulus of ring 1 and ring 2 is denoted as1; 2; � � � ; N1 and
N1 + 1; N1 + 2; � � � ; 2N1, respectively. The charge distribution
on each sub-annulus surface is assumed to be constant. Secondly,
suppose the voltage on one sub-annulusHj equalsVj ; which should
be a result of the charge distribution on this sub-annulus as well as
on all the other sub-annuli. The voltageVj for j = 1; 2; � � � ; 2N can
be written in matrix form as

[A][�] = [V ] (7)

where[V ] and[�] are column matrices and[A] is a matrix2N1�2N1

with matrix elementsAji. From (6),Aji can be represented as

Aji =
Hri

�"(ri + rj)
F [k(j; i)] kji =

2
p
rirj

ri + rj
: (8)

When i equalsj, the functionF [k(j; i)] will have singular points
and must be treated separately. This case finds the voltage of a
sub-annulus loop of radiusri at its own position.

Assume that a sub-annulus loop with inner radiusr and outer radius
r +�r has a surface charge distribution� and is itself divided into
M subareas. The area of each subarea isr���r, so that the charge
quantity on the surface of each subarea is�o = � r���r. The
potential produced by theith subarea charge element at the position
of the jth subarea element can be given as [9]

Vji =
1

4�"

�o
p
2r 1� cos[(j � i)��]

: (9)

The total potential at the position is

Vj = V1j + V2j
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where

V1j =

M

i=1

1
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�r���rp
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; i 6= j (10)

andV2j is the potential fori = j. Whenr�� is taken to be equal
to �r, for i = j; V2j can be given as [9]

V2j = �
�r

�"
ln(1 +

p
2): (11)

From (10), the matrix elementsAjj in (7) can then be written as
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wherei 6= j. Let V in (7) be equal to one, it can now be solved for
the charge densities[�] by inversion of the matrix[A] or by using
numerical techniques to solve the simultaneous equations. From the
solved charge densities[�] and the charge quantityq on the ring 1 is

q =

N

i=1

�i2�riH: (13)

The distributed capacitance between both rings is

C1 =
1

2
q = �H

N

i=1

ri�i (14)

and the capacitanceCo per unit length is

Co = C1=2�r: (15)

IV. NUMERICAL COMPUTATION AND RESULTS

The spiral resonator structure measured in [1] is used in our
calculations where shield diameterDs = 30 mm with removed top
cover. The dimensions of the spiral resonators were as follows: Outer
diameters of the spirals areDo = 20 and10 mm, respectively; the
ratio between inner and outer diameters wasDi=Do = 0:2; the ratio
between the widthW and spacingS of the spirals wasW=S = 1;
the number of turns wasN = 3; 4; 5; 7; 10; the thickness of the
substratets = 0:62 mm and the dielectric constant of the substrate
was "r = 9:5. The widthW of the spirals’ conductors was found
from W = (Do �Di)=(4N + 2). The coupling to the spirals was
via grounded semi-loop strips connected with coaxial lines from both
sides. Substituting (15) in (3), the distributed capacitance of the spiral
resonators can be found from

C = C1(Ri +Ro)=2r (16)

wherer is the mean radius of the rings. Ifr is selected to be equal to
(Ri+Ro)=2, then we haveC = C1 and the dimensions of two rings
having an equivalent capacitance of a desired spiral can be found as

r1 = [(Do +Di)� 6W ]=4: (17)

C = C1 is an interesting result showing that the distributed capac-
itance of a spiral withN turns is equal to the capacitance between
two annular rings (with radii found as shown below) and independent
of its turns’ numberN . Therefore, in our computation, the radii of
two annular loops wereri = r1 + (i� 1)W , wherei = 1; 2; 3; 4.

To achieve good accuracy, each annular loop is divided into
N1 = 50 sub-annular loops. According to the conditionr�� = �r;

M in (10) should be taken as the integer part ofM1 = 2�N1ri=W .
The effective Dielectric Constant"e� for suspended strip lines with
W=h < 1 can be calculated from [10]. Fig. 2 shows the calculated
charge distribution for two annular loops. The abscissa values are
n, which represent the radii of the loops that can be expressed for
ring 1 as r = ri + nH (n = 1; 2; � � � ; 50) and for ring 2 as

Fig. 3. Resonant frequency versus number of turns with two different outer
diameters.

Fig. 4. Distributed capacitances versus number of turns in the spiral.

r = ri+2W+nH (n = 51; 52; � � � ; 100), respectively. Fig. 3 shows
the calculated and experimental resonant frequencies for five different
spiral resonators. It is seen that the agreement between both is good.
Fig. 4 shows the calculated distributed capacitances. It is seen that
the distributed capacitance under this condition(Do=Di = const.) is
very weakly dependent on the number of turnsN of the spiral. This
was corroborated by the experimental results. This may be due to the
nonuniformity of the current distribution along the spiral. The greatest
density thus tends to be in the central part where the inter-turn capac-
itances can be treated as parallel while the outer turns’ capacitances
are effectively in series: a certain compensation possibly occurs.

V. CONCLUSION

A method for calculating the distributed capacitances and resonant
frequencies of spiral resonators has been presented and indicated to
be effective from the good agreement between computed and exper-
imental results. Though the method is approximate and simple, good
accuracy of calculation can be achieved with a modest computational
task. However, it should be noted that the calculated distributed
capacitance does not include the fringing end-effect capacitance and
the shield case. The end capacitance is negligibly small in the case
of suspended striplines. Our current experiments show that the shield
case influencesFo by �1.5%. More accurate evaluation of these
effects and others will be published in due course.
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Design of Modified Phase Reversal Electrode in
Broad-Band Electrooptic Modulators at 100 GHz

Kwok-Wah Hui, B. Y. Wu, Y. M. Choi, J. H. Peng, and K. S. Chiang

Abstract—An analysis is given on the modified phase reversal structure
of electro-optic modulators. It is shown that the bandwidth to half-wave
voltage ratio (BVR) increases with the number of phase reversal sections.
Under the assumption that the number of electrode sections isM , a set
of M -elements second-order nonlinear equations has been derived and
solved by Newton’s iteration method. The calculated results provide the
optimum overlap integral for each section of a phase reversal modulator
in order to “flatten” the frequency response of the device.

Index Terms—Integrated optics, optical modulators, optimization.

I. INTRODUCTION

The bandwidth of integrated electrooptic modulators is limited
mainly by the transmission attenuation and the mismatch between the
optical and microwave velocities [1]–[3]. To increase the bandwidth,
the length of the electrode needs to be reduced. This will, however,
in turn increase the half-wave voltage,V� [4]. In the past few years, a
number of modulators have been built using techniques such as “thick
electrode” and “ridge structure” to eliminate the velocity mismatch
between optical and microwave signals [5], [6]. Although in these
modulators the length of the electrode can be increased to maximize
the response of the device, their electrode structures are rather
complicated and would be more difficult to fabricate. An alternative to
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Fig. 1. Schematic diagram of phase modulator with five sections of phase
reversal electrode.

increase the BVR is the use of the phase reversal electrodes [7]. There
are different types of phase reversal electrodes [8], [9]. These include
the periodic and nonperiodic types, the continuous function, and the
simple step function electrodes. Each of them provides a certain
degree of improvement on the flatness of the frequency response with
significant increase in bandwidth to half-wave voltage ratio (BVR)
[10]. This paper will concentrate on the nonperiodic step function
electrode because it has a flat frequency response and is easier to
fabricate when compared with the continuous function electrode,
thick electrode, and ridge structure. The electrode is divided into
M sections of equal length. Mathematical analysis yields a set of
M -elements second-order nonlinear equations that is then solved by
Newton’s iteration method. The figure of merit,Q, can then be com-
puted. Here,Q is defined as the ratio of the BVR for an electro-optic
modulator withM sections of electrodes to that of a conventional
electro-optic modulator (with only one section of electrode).

II. ELECTRODE STRUCTURE

Fig. 1 shows the schematic diagram of a five-section phase mod-
ulator. An electrode of lengthL is divided intoM sections of equal
length. The length of each section,b, is, therefore, equal toL=M . This
structure employs a simple step function and provides a flat frequency
response. The electro-optic overlap integral at theith section is�i
where i = 1; 2; � � � ;M . In general, different sections ofi have
different �i since the relative position between the central line of
the electrode gap,G, and that of the optical waveguide varies in
different sections. The relative position between the central lines in
each section, however, is constant. This type of electrode pattern is
called the step electrode structure.

III. M ATHEMATICAL ANALYSIS

For a phase reversal structure in which the microwave phase is
reversed at the end of each section, the total induced optical phase
shift � is given by [8]

�(f)

FL
=

1


L

M

i=1

�i e
�
(i�1)b

� e
�
ib (1)

where

�(f) function of the modulating frequency,fm;
F = (�n3orEm�=�) exp(j!t0);
no effective refractive index for the optical wave;
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