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Abstract—A method for calculating the distributed capacitances and
REFERENCES resonant frequencies of spiral resonators is described. First, the charge
distribution on a spiral is found by a simplified model and the moment

K. W. Kobayashi, R. Esfandiari, W. L. Jones, K. Minot, B. R. Allen, A.method, then the distributed capacitance is calculated. The equivalent
Freudenthal, and D. C. Streit, “A 6—21-GHz monolithic HEMTx 3  inductance of the spiral resonator is then evaluated according to a
matrix distributed amplifier,IEEE Microwave Guided Wave Letiol.  standard formula, and the resonant frequencies are finally computed.
3, pp.- 11-13, Jan. 1993. The calculated results are compared with experimental data, and a good
R. Heilig, D. Hollman, and G. Baumann, “A monolithic 2-52 GHzagreement between them is shown.
HEMT matrix distributed amplifier in coplanar waveguide technology,”
in IEEE MTT-S Int. Microwave SympSan Diego, CA, 1994, pp.
459-462. I. INTRODUCTION
S. D'Agostino, G. D'lnzeo, G. Gatti, and P. Marietti, *A low-DC  panar spirals have certain advantages as electrically small res-
power 2—-18 GHz monolithic matrix amplifier,” iiEE Proc. Microwave - - -
Antennas and Propagatioec. 1994, pp. 440—444. ona_tors, but their characteristics are not WeII_understood and empirical
K. B. Niclas and R. R. Pereira, “The matrix amplifier: A high-gaindesign methods tend to be used. Experimental results for some
module for multioctave frequency bandslEEE Trans. Microwave characteristics of planar spiral resonators are described in [1]. The
gheg’églggicgr‘lfg-s M-lg?;zgist?r?c') %ffn‘:’;%%r&i; %C?Sin'stributed anr]p”ﬁeequivalent circuit of a planar spiral resonator can be made up of an
based on a design-oriented FET modéEEE Trans. Microwave Theory fhductance, a.capacnance, gnd a rg3|stance. The |nd.u.ctances of thin-
Tech, pp. 272-277, Feb. 1995. film planar spirals are considered in [2]-[4]. An empirical formula,
S. D’Agostino, G. D’Inzeo, G. Grifoni, P. Marietti, and G. Panariello,with limited accuracy, for calculating the distributed capacitance of
“A 0.5-12 GHz hybrid matrix distributed amplifier using commerciallyplanar spirals is given in [5] as
available HEMT's,” inlEEE MTT-S Int. Microwave SymgBoston, MA,

1991, pp. 289-292. C =0.035D, +0.06 [pF] €))
S. L. G. Chu, Y. Tajima, J. B. Cole, A. Platzker, and M. J. Schindler,

“A novel 4-18 GHz monolithic matrix distributed amplifier,” il989 \\hare D, is the outer diameter of the spiral in millimeters. This

IEEE MTT-S Int. Microwave Symp. Djglune 1989, pp. 291-295. f lai | imat it clearl lect I rel t
A. P. Chang, K. B. Niclas, B. D. Cantos, and W. A. Strifler, “Monolithic ormula Is only approximate as It clearly negiects several relevan

2-18 GHz matrix amplifiers [EEE Trans. Microwave Theory Techol. ~ parameters.

37, pp. 2159-2162, Dec. 1989. The inductance and resistance of a planar spiral resonator can
J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. Ke computed with sufficient accuracy from the available literature.
mchrgcv";sg‘?rrhe'é)”;i';gyg'ﬁ%ﬁ‘f}?g;”;g"gggg;’;ds‘?l'&Zflzlgsgéns' While the resonant frequencies of spiral inductors can also be
R. Dixit, B. Nelson, W. Jones, and J. Carillo, “A family of 2-20 GHzPredicted using standard software packages, there is a high cost in
broadband low noise AlGaAs HEMT MMIC amplifiers,” 1989 IEEE computational time and it is useful to have analytical expressions
Microwave and Millimiter-Wave Monolithic Circuits Symp. Diglune if they can be found. For this, a simple effective method for the
1989, pp. 15-19. capacitance is the main need.

In this paper, a method for calculating distributed capacitances
and resonant frequencies of spiral resonators is described. First, the
charge distributions on the spirals are found by a simplified model
and the moment method. Then, the distributed capacitances of the
spiral resonators are calculated. The equivalent inductances of the
spiral resonators are then evaluated according to a standard formula
and the resonant frequencies are finally computed and compared with
experimental data from Nistét al. [1].

Il. CALCULATION OF THE DISTRIBUTED CAPACITANCE

A planar spiral resonator system includes a spiral on a substrate,
coupling circuits, and a shield box. For simplicity, a spiral in a
uniform dielectric medium with permittivity: is considered and is
illustrated, with an equivalent circuit, in Fig. 1.

It is assumed that the capacitanCe per unit length of the spiral
resonator is given (see Section Ill). Following the method described
in [8], the total distributed capacitan¢éof the spiral resonator can be

Manuscript received October 17, 1995; revised September 23, 1996.

Z. Jiang is with the Institute of Electronics, Academia Sinica, Beijing
100080, China.

P. S. Excell and Z. M. Hezaji are with the Department of Electronic and
Electrical Engineering, University of Bradford, Bradford BD7 1DP, U.K.

Publisher Item Identifier S 0018-9480(97)00278-0.

0018-9480/97$10.00 1997 IEEE



140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 1, JANUARY 1997

¢ distributions
o e
8 - B

g.°
o
2]

Char,
[=)
[=]
s

R L % 20 40 60

Order number of subarcas N1
(@ (b)

Fig. 2. (a) Charge distributions on two rings. (b) The geometry of two
annular rings.

(b)

Fig. 1. Layout of a spiral resonator and its equivalent circuit. (a) Thgshere G, G2, and pi, p» are the Green’s functions and charge
physical layout. (b) Equivalent circuit. distribution functions, respectively. The inner and outer rings have
similar mathematical formulations.

found. If the width1¥” of the spiral conductors is equal to the spacing
S between the turns, the equation of the spirat is R, + W¢/x. B. Charge Distribution

R} is the initial mean radius, which is equal 8 + W/2, Ri is  \when the pointP(r. ) is taken on the surface of the inner or outer
the inner initial radiusy is the mean radius, antlis the rotational ring, the voltage on the surface of the ring can be obtained from (6).
angle in radians (see Fig. 1). Since the two rings are taken to be perfect conductors, the tangential
The voltage between the ends of the spiral with turns is gjectric fields on their surfaces must be zero, i.e., the potential of
denoted by Then, the voltage per turn &/V, and the distributed eyery point on the surface of each ring must be equivalent. This

capacitance of the spiral is condition can be obtained by adjusting the charge distribution on
2N g7 each ring. If the voltages on the surfaces of both rings are given as
” q 1 L ! 17 0 _ . L. . .
C= vTT ), NC" R+ W p d¢ (2)  +Vv and—V, respectively, then the charge distributions on both ring

surfaces can be solved from (6).
hence The integrals can easily be solved by a straightforward numerical
technique or the moment method. First, each conductor ring surface

C=nC,(R; + R, 3) . o . . . - .
™ ColBi + Bo) ® is subdivided intoN; sub-annuli of finite widthH;, and every
where R, is the outer final radius of the spiral. This formula issub-annulus of ring 1 and ring 2_i5 denoted B, N _and_
obtained under the assumption tl6at is independent of. N1 + 1,N; + 2,---,2N, respectively. The charge distribution

on each sub-annulus surface is assumed to be constant. Secondly,
suppose the voltage on one sub-annuilysequalsV;, which should
be a result of the charge distribution on this sub-annulus as well as
on all the other sub-annuli. The voltagg for j = 1,2,---,2N can
be written in matrix form as

The geometric formation of a spiral is approximately axisymmetric
[3]. The potential function in the space occupied by it is also [Allp] = [V] )
symmetric in a cylindrical coordinate system. Therefore, each turn
of the spiral can be substituted by a circular loop with an appropriatéere[V] and[p] are column matrices arfe] is a matrix2Vy x 2V
radius. The capacitaneg, can be computed from two circular loopsWith matrix elementsd;;. From (6),4;: can be represented as
with the same widtH¥ and spacingS. The Green'’s function of a —

Hr; FUGL )] ki = 2,/ ®)

IIl.  CALCULATION OF THE CAPACITANCE C,

A. Green’s Function

circular wire loop with radius, and a line charge density in a Ajj=—— = .
homogeneous dielectric with permittivitycan be given by [7] me(ri+ 7)) it
QLE ﬁkp(zg) r#0 Wheni equalsj, the function F[k(j,7)] will have singular points
G(r, 2370, 2,) = {v—o =0 (4) and must be treated separately. This case finds the voltage of a
2ey/reH(amz0)? sub-annulus loop of radius at its own position.
where Assume that a sub-annulus loop with inner radiasd outer radius

2 2 2 r + Ar has a surface charge distributiprand is itself divided into
= dror/(ro+1)" 4 (2 = 20) ®) 31 subareas. The area of each subareaN8Ar, so that the charge

F(k) is the complete elliptic integral of the first kind with modulusduantity on the surface of each subareavis = prAf Ar. The

%k, and (r, z) is the coordinate of any poinP. potential produced by thih subarea charge element at the position
For two thin annular rings [see Fig. 2(b)], the total potential at a@f the jth subarea element can be given as [9]
arbitrary pointP(r, z) is 1 a

= ‘7‘ _ .
T Je g >, — {7 — o3/
V, = / G1(r, 2570, 20)p1(70, 20 )drs T /2 V1 = cos[(j — 1) Ad]
7‘1

The total potential at the position is

9)

+ / G (r, 27 2V pa (2L ®)
g V, =Vi; + Ve
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where o AGA | 1:Do=10mm
=5 — pravar . i#j (10 | 2:Do=20
Y £ dme \/2r\/1 = cos[(j — i) Af] # (10) of _1 LT 0 : mm :

Y
o

and V3, is the potential fori = j. WhenrA# is taken to be equal

N
s
p=
]
. ; o T
to Ar, for i = j, V>; can be given as [9] i :
BY iy
. Ar - < N e — e
Vaj = p—In(1+ V2). (11) 8
TS S peee .
From (10), the matrix elements;; in (7) can then be written as L‘g *
2 M —— . B
Aj; = £ln(l +2) + " > 1,, : § |—: Calculated in this work | = |~~~ . .
e dme/2r &= /1 — cos[(j — i)AF] ) "
- [72]
12 2 x% . Experimental Ref.[1]
wherei # j. Let V in (7) be equal to one, it can now be solved for 44" :
the charge densitielp] by inversion of the matri{A4] or by using Number of turns N 10’

numerical techniques to solve the simultaneous equations. From the ‘ ber of th diff
solved charge densitiés] and the charge quantityon the ring 1lis Fig. 3. Resonant requency versus number of turns with two different outer

diameters.
Ny
q= ZpiQTL"I‘l’H. (13) 1 T T T '
=1 : : :
The distributed capacitance between both rings is
1 Ny '_08" . 7
C = 71 = TrHZr,;p,; (14) E ;
=1 _C_ _——.
and the capacitanc€, per unit length is 00.6f - S 1
@
C, = C/2xr. (15) §
504 8
S
IV. NUMERICAL COMPUTATION AND RESULTS 8 :
The spiral resonator structure measured in [1] is used in our Q.2 - R R IR EIEILIEUE R e
calculations where shield diamet&r, = 30 mm with removed top
cover. The dimensions of the spiral resonators were as follows: Outer . :
diameters of the spirals al®, = 20 and 10 mm, respectively; the 0 i : . :
ratio between inner and outer diameters \iag D, = 0.2; the ratio 2 4 6 8 10

N f
between the widthV and spacingS of the spirals wadV/S = 1; umber of turns N

the number of turns wa&v = 3,4,5,7,10; the thickness of the Fig. 4. Distributed capacitances versus number of turns in the spiral.
substrate; = 0.62 mm and the dielectric constant of the substrate
was e, = 9.5. The width W of the spirals’ conductors was foundr = r;+2W+nH (n = 51,52,---,100), respectively. Fig. 3 shows
from W = (D, — D;)/(4N + 2). The coupling to the spirals was the calculated and experimental resonant frequencies for five different
via grounded semi-loop strips connected with coaxial lines from bogipiral resonators. It is seen that the agreement between both is good.
sides. Substituting (15) in (3), the distributed capacitance of the spiFaQ). 4 shows the calculated distributed capacitances. It is seen that
resonators can be found from the distributed capacitance under this conditiéh, /D, = const) is
. very weakly dependent on the number of tufisof the spiral. This
C=Ci(i+ Ro)/2r (16) was corroborated by the experimental results. This may be due to the
wherer is the mean radius of the rings.ilfis selected to be equal to nonuniformity of the current distribution along the spiral. The greatest
(Ri+R,)/2, then we have&® = C'; and the dimensions of two rings density thus tends to be in the central part where the inter-turn capac-
having an equivalent capacitance of a desired spiral can be foundtasces can be treated as parallel while the outer turns’ capacitances
r1 = [(Do + Di) — 6W]/4. (17) are effectively in series: a certain compensation possibly occurs.

C = ( is an interesting result showing that the distributed capac-
itance of a spiral with\V turns is equal to the capacitance between V. CONCLUSION
two annular rings (with radii found as shown below) and independentA method for calculating the distributed capacitances and resonant
of its turns’ numberN. Therefore, in our computation, the radii offrequencies of spiral resonators has been presented and indicated to
two annular loops were; = r1 + (i — 1)W, wherei = 1,2, 3, 4. be effective from the good agreement between computed and exper-
To achieve good accuracy, each annular loop is divided intmental results. Though the method is approximate and simple, good
N, = 50 sub-annular loops. According to the conditipA8 = Ar,  accuracy of calculation can be achieved with a modest computational
M in (10) should be taken as the integer partdf = 27 N1r;/W. task. However, it should be noted that the calculated distributed
The effective Dielectric Constantg for suspended strip lines with capacitance does not include the fringing end-effect capacitance and
W/h < 1 can be calculated from [10]. Fig. 2 shows the calculatetthe shield case. The end capacitance is negligibly small in the case
charge distribution for two annular loops. The abscissa values afesuspended striplines. Our current experiments show that the shield
n, which represent the radii of the loops that can be expressed @@se influences’, by ~1.5%. More accurate evaluation of these
ring 1 asr = r; + nH (n = 1,2,---,50) and for ring 2 as effects and others will be published in due course.
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Kwok-Wah Hui, B. Y. Wu, Y. M. Choi, J. H. Peng, and K. S. Chlangputed. Here() is defined as the ratio of the BVR for an electro-optic

modulator with A/ sections of electrodes to that of a conventional

Abstract—An analysis is given on the modified phase reversal structure electro-optic modulator (with only one section of electrode).
of electro-optic modulators. It is shown that the bandwidth to half-wave

voltage ratio (BVR) increases with the number of phase reversal sections.
Under the assumption that the number of electrode sections i3/, a set Il. ELECTRODE STRUCTURE

of M-elements second-order nonlinear equations has been derived and Fig. 1 sh th h tic di fafi fi h d
solved by Newton's iteration method. The calculated results provide the Ig. 1 shows the schemauc diagram or a Tive-section phase mod-

optimum overlap integral for each section of a phase reversal modulator ulator. An electrode of lengtih is divided into M sections of equal
in order to “flatten” the frequency response of the device. length. The length of each sectidnjs, therefore, equal td /A . This
structure employs a simple step function and provides a flat frequency
response. The electro-optic overlap integral at dhesection isl;
wherei = 1,2,---, M. In general, different sections af have
different I'; since the relative position between the central line of
The bandwidth of integrated electrooptic modulators is limitethe electrode gap(, and that of the optical waveguide varies in
mainly by the transmission attenuation and the mismatch between #iéerent sections. The relative position between the central lines in
optical and microwave velocities [1]-[3]. To increase the bandwidteach section, however, is constant. This type of electrode pattern is
the length of the electrode needs to be reduced. This will, howeveslled the step electrode structure.
in turn increase the half-wave voltadé, [4]. In the past few years, a
number of modulators have been built using techniques such as “thick m
electrode” and “ridge structure” to eliminate the velocity mismatch ] . ) )
between optical and microwave signals [5], [6]. Although in these For a phase reversal structure_ in which the_ mlcrowave_phase is
modulators the length of the electrode can be increased to maximigiersed at the end of each section, the total induced optical phase

the response of the device, their electrode structures are rathigift ¢ is given by [8]

Index Terms—integrated optics, optical modulators, optimization.

|I. INTRODUCTION

M ATHEMATICAL ANALYSIS

complicated and would be more difficult to fabricate. An alternative to L M ) )
@(f) — 1 Zr [677(171)1) _ 7711’)] (1)
Manuscript received December 4, 1995; revised September 23, 1996. FL ~L — ‘ ]
K.-W. Hui and K. S. Chiang are with the Department of Electronic =
Engineering, City University of Hong Kong, Hong Kong. where
B. Y. Wu and J. H. Peng are with the Department of Electronic Engineerin . -
Tsinghua lilﬁivciz;]sity, Biijigng,eChi;at. © Pepariment ol Electionic Engieering, o(f) functlog of the modula'tlng frequency;
Y. M. Choi is with the 1SO-Ing Centre, Hong Kong. F = (=norEmm/A) exp(jwto);
Publisher Item Identifier S 0018-9480(97)00279-2. No effective refractive index for the optical wave;

0018-9480/97$10.00 1997 IEEE



